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Abstract—The second part of this study is concerned with the prediction of the response and various
instabilities found in Part [ to govern the elastic-plastic flexure of circular cylindrical shells. Sanders’
shell kinematics and the principle of virtual work were used to formulate the problem. A Rayleigh—
Ritz procedure was used to discretize the problem. The resultant non-linear equations were solved
iteratively using Newton's method. The three types of behavior involving bifurcation into short
wavelength ripples, localization following the attainment of a natural limit load and interaction of
the two were studied. In each case the predicted response was found to be in very good agreement
with the experimental result.

NOMENCLATURE
dyy metric tensor components
d,. i, G, imperfection amplitudes
by curviture tensor components
Eu Ky membrane and bending strains on shell middle surface
Moy N moment and stress resultants
shell radius
5,20} co-ordinates
ta e w) displacements
1 bifurcation mode
Wwis, ) initial imperfection
b* angle ol rotation at s = L
(1134 vidue of @* at mit moment.
INTRODUCTION

This part of the study is concerned with the prediction of the response and instabilitics in
long shells under pure bending. Of particular interest are shells with lower diameter-to-
thickness ratios (D/r < 100 for common structural metals) whose behavior is strongly
influenced by the plastic characteristics of the material. The experiments presented in Part
L. in which aluminum 6061-T6 shells were used, demonstrated that the major deformation
characteristic of’ the response of such shells is the ovalization induced by the bending of their
cross-sections. The reduction in rigidity caused by ovalization, combined with the reduction
in the modulus of the material as it goes further into the plastic range, lead to a limit
moment in the response (natural limit load instability). Thus, the first requirement from an
analysis of the problem is the capability of predicting accurately the uniform ovalization
induced by bending.

In the case of thinner shells, short wavelength rippling followed by catastrophic collapse
precede the natural limit load. The collapse is local in nature and is characterized by a
number of “diamond™ shapes as shown in Fig. la for D/t = 44 (such buckling modes are
common to thin clastic shells). The wavelength of the ripples is only a small fraction of the
diameter of the shell. The onset of the rippling can be established by the customary linearized
bifurcation criterion [see, for example, Bushnell (1981)’ and Ju and Kyriakides (1990)/).1
The study of the post-buckling behavior of a rippled shell and of the mechanism of collapse
will requirc an analysis which allows the development, growth and possible localization of
such ripples.

t( ) refers to items from Part 1.
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As the shell D ris reduced, the ripples occur at progressively higher curvatures. which
get progressively closer to the curvatures corresponding to the natural himit loads. The
collapse mode is now characterized by one sharp local kink, as shown in Fig. |b. For even
thicker shells. a limit load instability is recorded first. In the neighborhood of the limit load.
the shell ovalization ceases to be uniform. The deformation localizes in a region a “few™
diameters long at a dropping moment. The shell collapses catastrophically by developing
a kink, as shown in Fig. lc. in the trough of localization.

The same behavior was observed for thicker shells. However, such shells retain signi-
ficant post-limit load strength and collapse becomes progressively less abrupt (see Fig. 1d).

Prediction of localization associated with the natural limit load requires analyzing a
shell which is a number of diameters long. Thus, the problem has at least two characteristic
axial wavelengths which can differ by one to two orders of magnitude. Clearly this can be
expected to complicate numerical discretization schemes. This task is further complicated
by the experimental observation that, for shells with intermediate D/t values, the two modes
of instability interact and. as a result, the analysis must have the flexibility of addressing
this interaction.

A special purpose shell analysis, capable of addressing the characteristics of the problem
outlined, has been developed. The primary objectives of the study were to evaluate the pre-
buckling response of the shells, identify the dominant instabilitics, the initial post-buckling
behavior of the shells and. ultimately, the major factors which influence the onset of these
instabilities. These goals can be achicved, by and large, within the limitations of Sanders’
(1963) non-lincar shell equations, which were adopted in the formulation. The validity of
the formulation will be verified by direct comparison to the experimental results. The
results will be used. in combination with the experimental observations, to tlluminate the
phenomena described in Part 1.

PROBLEM FORMULATION

(1) Kinematics
From above the major requirements for the formulation arc as follows:

(a) It should be capable of modelling the ovalization of the cross-section.

(b) It should be capable of simulating the growth of short wavelength axial ripples on
the compressed side of the shell.

(c) Itshould allow the deformation of the shell to localize over sections a few diameters
fong, as observed in the experiments.

In view of the axial length of the localized deformation recorded in the experiments,
Sanders’ non-linear shell kinematics will be used (mid-surface strains are assumed to be
small; rotations of normals to the mid-surface are assumed to be small but finite).

We consider a shell of radius R, wall thickness ¢ and half length L. Points on the shell
mid-surface are identified by (0, ) (sce Fig. 2a). The plane s = 0 is assumed to be a plane
of symmetry. Because the problems of interest have distinctly different length scales, shells
in categories (1) and (3) in Part [ will be treated separately at first.

For algebraic convenience and easier interpretation of the results, it is desirable that
the displacement components be measured from a circular toroidal reference shell (see Fig.
2b). To achicve this, we deform the shell in steps and use a deformation composition scheme
similar to the one used by Fabian (1981)/ to establish the final strains in the shell. The initial
(undeformed) circular cylinder can be described through the metric tensor afy (fundamental
tensor) and the curvature tensor bl as follows ((x. f) = 1,2]:

1 0 0
[“2«]=[0 l]' (hss] = 0 (N

- o
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Fig. 2. Conligurations of shells analyzed.

The circular torus has metric and curvature tensors given by :

xcost
. . | +xRcosl
142xRcosl O
[“:‘ﬂ] = . [[’:l/!] = | (2)
0 l 0 I
R

where x and 0 arc defined in Fig. 2b. The membrane and bending strains in the torus, Ey
and K. are related to (1) and (2) as follows:

ay = ay+2E,,, b= h?ﬁ+lc’zﬂ- )]
The circular toroidal shell is now allowed to deform further by developing additional
displacements {u, ¢, w} in the 5. # and radial directions respectively. The deformed shell is

defined by

gy = ayg+2EY. by = b+ K3 )
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where £3, and K% are the additional deformations imposed on the circular torus. Their
general form is as follows [see Appendix in Sanders (1963)']:

l . s las
EY= rm[zg—msm@%—wncos 0] + L¢3 + 1o°,

| . .
Ed = E[‘*“*’“']* i+ 1o,

1 (1 +xRcosb) .
5= - unsing |+ 16,0,
E 30+ ~Reost) [Uvu R +r,+ux bln9:|+~¢l¢)_.
* —brsi
K% = l+chos()[¢"‘ ¢.xsind)].
ya ¢2_H
Ki="%"
l (I +xRcos) )
G — R, . . ‘e ) )
" = 21 +xRcos ) [‘/’"" R Foutdnsnl +"’}
|
i = lV+KR'cm(')[‘w--"+""C"5()]-
p, = : ]
P = R[ Wyt
I (I +xRcos0) »
¢ = 31 +xReos 0) I:L LI S .sml):l. (5

If the shell deformation is uniform along s (i.c. uniform ovalization as shown in Fig. 2¢)
then # = 0and ( ), = 0in (5); otherwisc (5) can be used to describe general deformations
(c.g. Fig. 2d). The total deformation is given by

Ey= f‘(”fy—“yfr) and Ky = (/73/1‘/’://)- (6)
The strains &,, at any point in the shell are given by

Exp = (E:/I+:Kzﬂ)//(A:A/I)I oA x], As=1+ R 7

(see Bushnell (1974)].
If the shell has initial gcometric imperfections then (1) must be altered appropriatcely, say
to dy; and b (see Appendix A), and eqn (6) becomes

£y = é[“x:n"l?;'n]- Ky = [bfn"b—l)/f]- 8)

(2) Constitutive equations
The inelastic material behavior was modelled through the J, flow theory of plasticity
with isotropic hardening. Under the customary assumption of plane stress. the incremental
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constitutive equations reduce to

1 - .
€ = pl(1+V)0oy —G,0,] + 455,56 .

3 [l 1] :
| ——=| Ah>0
q= 4J: E, E (9)

0, J: <0

where s = o —1tr (¢)1. J, = is-s. E is the material Young's modulus. v the Poisson ratio
and E, is the tangent modulus. In the numerical simulations that follow the uniaxial
response was fitted with the Ramberg-Osgood fit (eqn (3)': data given in Table 1) from
which

1 U 3nf(3J,\"°07
—— === . 10
(0; ) (10)

Bifurcation buckling calculations were carried out using the J, deformation theory of
plasticity which historically has been shown to lead to predictions which are in better

agreement with experiments [see Hutchinson (1974)']. The incremental form of the appro-
priate equations is as follows

! . . .
{:111 = E- [( l + \")0'.‘” - V\a‘,';"\)xﬂ] + stﬂ-\‘;‘d“;d-
)

311 1
Q“a‘iz[s;"s;] h
where E, is the secant modulus given by
1 1
E, E

and
I E, i
Vs=;)'+ ‘E(V""%). (!2}

The membrane and bending stress resultants (intensities) are obtained by integrating the
stresses through the wall thickness as follows

2 A Az " A A,
Ny = J-uz(:fj;)_mo'ﬂd: and My =| e (13

(3) Principle of virtual work
Equilibrium is satisfied through the principle of virtual work (PVW) which can be
stated as follows:

J' {NwéE,ﬂ'*‘/"’,ﬂ(iK,ﬂ} A=0W (l4)
A

where A is the surface area of the shell and 61 the virtual work of the external forces.
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SOLUTION PROCEDURE AND RESULTS

The shell was loaded incrementally by prescribing either the overall curvature « in eqn
(2). or the rotation @* at s = L. As a result, 31 in eqn (14) is zero. The integrations were
performed by Gaussian quadrature. The structure was discretized by adopting suitable
expansions for the displacements {u. v, w}. The expansions adopted for each application
are given below.

(1) Uniform ovalization
In this case. ( ), =0 and « =0 in eqn (5). The following displacement expansions
were used [see Gellin (1980)’ and Shaw and Kyriakides (1985)']:

A

N, N,
r=RY bysinnd, w=RY a,sinnd. (15)

n=2 n=1(

Typically, V. = N, = 6 was found to yield sufficiently accurate results. Seven Gaussian
integration points through the thickness and 12 in the 0€[0, nr] direction were used.
Substituting (15) into (14), the PYW can be restated as follows:

{ZRJ: [NypEopi+ MKl d()}(ﬁqi = ()
i=1,2,....N.+N, (16)
where
q=[ag.ay,....ay by by .. by]'.

For cach prescribed value of k, 8, are arbitrary. As a result, eqn (16) yiclds (N, + N,) non-
lincar algebraic cquations which are solved numerically using the Newton-Raphson
method.

The kinematic relations used in the formulation of the problem allow only for moderate
rotations of the normals to the mid-surface. In order to test the adequacy of these kinematics,
moment -curvature and ovalization-curvature responses calculited for a number of shells
were compared with the corresponding results from the solution procedure of Shaw and
Kyriakides (1985)', which is based on large rotation kinematics. For the aluminum shells
uscd in the experiments, the two sets of results were in very close agreement (e.g. for shell
No. Y in Table 1’ with D/r = 25.3, the two limit curvatures differed by 1.5% and the limit
moment by 0.002%). In all cases, the ovalization induced by bending is relatively small due
to the influence of inclastic material effects. The rotations are, in gencral, quite moderate
and their influence is relatively small; as a result, the predictions from Sanders’ shell
cquations should be dependabile.

A bigger difference between the results from the two formulations was observed in
lincarly clastic shells. Such shells undergo significant ovalization prior to reaching their
limit moment. The rotations of the normals are proportionately larger and the results from
the present formulation are somewhat less accurate. For example, in the case of a shell
with D/t = 200, the limit moment and corresponding curvature predicted by the current
formulation were 1.2% and 5% lower than the more accurate results, respectively. In view
of the favorable comparison obscrved in the elastic-plastic cases, and of the simplicity
afforded by using this type of kinematics in the analysis, it was concluded that Sanders’
kinematics were quite suitable for analyzing the problems of interest to this study.

(2) Bifurcation analysis

The possibility of bifurcation buckling from the uniformly ovalized state to one which
has periodic waves on the compressed side of the shell was checked through the following
procedure. Following Hill (1958)' and Hutchinson (1974)’, it is assumed that, at the
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equilibrium state in question, there exist two possible incremental solutions u' and u’
[u = (u. v. w)"]. We denote their difference by { '} which we identify as the buckling mode
given by

N,

W = Rcosps y, C,cosnb,
n=0

N,

¢ = Rcosps ) D,sinnb.
n=1

N

i = Rsinps . E,cosnb (17)
n=10

where @ are measured from the same circular, toroidal reference shell used in the rest of the
formulation. Clearly, { | must satisfy the PVW and, as a result

{R J ‘. [[Vxli.; Ex[}.l + AI:H.; Kx/f.i + N.?\'E.U.u + N!())"EUHJ/] ds dg}‘il(il = 0

oy

ij=12... N+ N+N,+2) (18)
where

. b4 - . .
A= [,. q = [( ().(‘1,--~'C,Vw' Dlv-'-vDN.u EOv Elv"'vE.\"]r

and N" are the membrane stresses from the pre-buckling solution presented in the previous
section. In abbreviated form, cqn (18) can be expressed as

q"Hg§ = 0. (19)

If the solution tested is unique, then H is positive definite. At the point of bifurcation,
det H = 0. Typically, the det H is evaluated at every loading increment of the pre-buckling
solution procedure using Hill's concept of a comparison solid (yields lower bound estimates
of the biturcation loads). In evaluating H, the J, deformation theory of plasticity was used
to caleulate the instantancous moduli of the material. A trial value of p = r/4, (4, given in
egn (8)7) was used. Once a change in sign was identified, p and the curvature x were varied
until the critical values 4, and x, were found to a sufficient accuracy.

Bifurcation buckling analyses and results have been presented by a number of previous
investigators. Wherever possible, published results were compared with predictions from
the present formulation. For example, Stephens et al. (1975) used the STAGS program to
analyze elastic shells of finite length under pure bending. The critical moment of the longer
shell they analyzed was found to be in good agreement with the present predictions. Fabian
carricd out a detailed analysis of long elastic shells. His calculations for a shell with
D.t = 120 were repeated. The critical moment, curvature and wavelength were found to be
in very good agreement with the predictions from the present analysis (difference less than
3%).

Plastic bifurcation calculations have been conducted by Bushnell (1980) using his
BOSOR-5 axisymmetric shell analysis. An example from this work involving an clastic-
pertectly plastic shell with D/r = 55.3 was analyzed with the present formulation by approxi-
mating the material with a Ramberg-Osgood fit with n = 200. The critical moment and
curvature were found to be in excellent agreement with Bushnell’s predictions, but the
critical wavelengths differed due to the approximation made in the stress—strain response.
Gellin (1976), developed an approximate plastic bifurcation analysis using the DMV shell
equations for cylindrical shells and the pre-buckling stress state from his long tube analysis
(1980)’. The results presented in Table 2 of his paper were recalculated with the present



1132 G T Ju and S0 KYRIAKIDES

tormulation. Good agreement wus found tor the thickest (D ¢ = 60) of the shells analyzed
(critical curvature 1.7% higher than Gellin's). In the case of the shell with D¢t = 200 the
critical curvature predicted by the present formulaton was approximately 4% lower than
his prediction.

Figures 3 and 4 show compurisons of the predicted and measured moment—curvature
and ovalization-curvature responses for shells with D't = 30 and 44. respectively. These
shells developed axial ripples prior to the natural limit load instability. The measured
and predicted bifurcation points and values are identified on the respective responses
[(T) = predicted bifurcation: () = ripples first detected in experiment]. The predictions of
the responses as well as of the bifurcation points are seen to be in very good agreement
with the experimental results.

Very good agreement between experiments and predictions was obtained for all the
shells tested which exhibited bifurcation buckling as demonstrated in Fig. 23", An area of
disagreement between experiment and analysis is shown in Fig. 5. where the critical half
wavelengths vielded by the analysis (4,) are compared to the experimental values (4.,) for
shells with 20 < Dt < §5. The predicted wavelengths are uniformly longer than those
measured in the experiments. Similar bifurcation calculations. based on the J, flow theory
of plasticity, viclded unrealistically high values of critical curvatures and even longer values
of critical 4 [eonsistent with results in other plastic buckling problems —see Batdorf (1949)].
In view of this, the corner theory of plasticity [sce Christotfersen and Hutchinson (1979)]
can be expected to also yield wavelengths which are longer than 4,. This discrepancy is
contirmed by similar mcasurements made by Reddy in his experimental study of the problem
of 1979, He compared his measurements with predictions for axially loaded cylinders [eqn
(8)'] and found a similar difference between experiment and analysis. Figure 6 shows a
comparison of 4, obtained from the current bending analysis, to the critical wavelength
of axially loaded cylinders of various £ s (the average material properties of the aluminum

12
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Fig. 3. Bending response of aluminum shell with 72 ¢ = 30 (1) moment curvature; (b) ovalization-
curvature. [(.\) = hmit moment; bifurcation: experiment (). predicted (7).
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Fig. 4. Bending response of aluminum shell with D/t = 44 (a) moment-curvature ; (b) ovalization -
curvature,

shells tested, given in Part [, were used). It is interesting to observe that the critical
wavelengths of the two problems do not differ significantly. The value corresponding to
axisymmetric buckling of axially loaded elastic cylinders, 4, is also included. Even this value
compares quite well with the other values for the whole range of D/t of interest here.

We, thus, conclude that Reddy's results are very similar to ours and that a discrepancy
between experiment and analysis regarding the critical wavelengths, 4., does exist. The
reason for this discrepancy is not known at this time. However, in spite of this difference,
the more important quantity of critical curvature, x,, yiclded by this analysis, was con-
sistently found to be in very good agreement with the experimental results.

Aeol2
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>
81 8 :
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a ® L )
L]
6 1 .« o
L]
4 4
24
- T T T T T
OJ\'zs 30 3 40 45 50 55
—0
1

Fig. 5. Comparison between measured and predicted axial ripple wavelengths as a function of D/t.
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Fig. 6. Predicted 4, as a function of D/t for axially loaded cylinder and cylinder in pure bending
(A corresponds to elastic, axially loaded cylinder).

(3) Post-buckling behavior and effect of imperfections

The post-buckling behavior of the shell can be analyzed by allowing for deformations
which vary along the length of the shell. A first step in such an effort is to consider a shell
with initial geometric imperfections which are related to the critical buckling mode obtained
from the bifurcation analysis presented above. We thus consider a circular cylindrical shell
with axisymmetric imperfections defined as follows

- s
W= —a,Rcos ;- (20)
D

where 4, is the critical wavelength of the ripples caleulated from the bifurcation analysis.
(A similar study was conducted by Fabian (1981) but in eqn (20) instead of 4,, he used 4,
(egn (8)) obtained from axially-loaded elastic shells.) If it is assumed that the axial ripples
grow uniformly along the shell length, then it is suflicient to analyze a shell with L = 4,,.
In this case, the complete strain-displacement equations given in eqn (5) are used with the
following expansions for the displacements :

Lo

u=R Z Z ¢, sinipscos j0,

(=1 j=0

N, Lo,
p=RY b,sinn0+RY Y d,; cos ipssin j0,
nal tm | fal
N, [
w=RY a,cosnl+R Y ¥ e,cosipscos jo, (21
n=( tmljal

where p = n/i,. Typical values for the number of terms found to be suflicient were
N=N,=J,=6and [, =4

The first case analyzed was a linearly elastic shell with the following characteristics :
D = 1.250, D/t = 200, v = 0.32. The critical moment and curvature values predicted for
the perfect case are as follows:

Kﬁ/KI = 1.74, KL/Kl ==l.95,
My/M* =0924, M, /M* = 0.935,

NDY,

where M* = ERt*/(1 —v?) and g is the half wavelength of the axial ripple bifurcation mode.
In the imperfect cases, 4, was replaced by 4. in eqns (20, 21). The moment—curvature and
ovalization—curvature responses for imperfection amplitudes of a,, = 0, 10~ *and 3 x 10*

it

1.693,
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Fig. 7. Predicted bending response of perfect and imperfect clastic shell: (a) moment curvature ;
(b) ovalization curvature,

are shown in Fig. 7 (ovalization in the valley of imperfection). As observed by previous
investigators [Axelrad (1980); Fabian (1977); Gellin (1980)/] bifurcation buckling pre-
cedes the limit load instability. The post-buckling response has a distinctly negative slope.
This leads to the expectation that longer shells will experience localized deformation fol-
lowing bifurcation buckling. The presence of axial imperfections leads to a limit load
instability which occurts at reduced values of moment and curvature, as shown in the figure.

A similar study of the effect of axisymmetric imperfections on elastic—plastic shells was
conducted on an aluminum shell with D/t = 44 (sce Table 1‘) which is representative of the
thinner group of shells studied experimentally. The results are shown in Fig. 8. The main
influence of the imperfections on the calculated responses is secen to occur once the shell
enters the plastic range of the material. Due to the imperfections the shell becomes more
compliant and the limit load instability occurs at a smaller curvature than that of the perfect
shell. The value of & is seen to become progressively reduced as the imperfection amplitude
is incrcased. Figure 9 shows a graphical reproduction of a calculated equilibrium state of
this shell which uniformly distributed axial ripples (gencrated on an image processing system
consisting of a Grinnell 270 display system coupled with a microVAX [I-MOVIE.BYU data
processing system).

(4) Second bifurcation

In the experimental part of the study it was observed that the thinner shells tested
(D/1 > 44) developed ripples at an increasing load. Soon after the appearance of the ripples
the shell collapsed by developing one sharp local buckle characterized by a number of
circumferential waves as evidenced by the diamond nature of the collapse mode shown in
Fig. la. This sequence of events is reminiscent of the behavior observed in the related
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Fig. 8. Calculated responses for shells with imtial axisymmetric imperfections: () moment -
curvature ; (b) ovalization curvature. [(1) = first bifurcation; (4) = sceond bifurcation. |

problem of plastic buckling of axial loaded cylindrical shells [see Lee (1962)’, Gellin (1976),
Tvergaard (1983)' and Yun and Kyriakides (1990)']. Motivated by the experimental obser-
vations and the works on this related problem we dcveloped an analysis for bifurcation
from the uniformly rippled state to one involving the following buckling mode:

1, J,
w=RY ¥ A,cos(i- Ypscos jo,
i=1/=0
1, 4
i=R B,; cos (i—})pssin 0,
I-Zl j-zl ’
I 4
i=RY ¥ C, sin (i — })pscos jO (22)

imlja0

where p = n/4, [i.c. it is assumed that the axial wavelength of this buckling mode is twice
that of the first one—see Koiter (1963) and Gellin (1976))].
Using the same arguments as before the bifurcation check is again

where

H= J‘ J‘ {Nlﬂ-l E‘ﬂ-f + M:ﬂ-/' Kxﬁ.i + N.gE.r.r.i/ + N:I]u Erm,,, + N,?nE‘o_,'}} dfds (23)
~ip Jo
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Fig. 9. Graphical reproduction of caleulated deformed configuration of shell exhibiting axial ripples
v amplificd x 2 Djt = 44).

Fig, 13, Graphical reproduction of caleulated deformed configuration of shell exhibiting localization
of axial ripples (D/t = 44).
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Fig. I8, Graphical reproduction of calculated detormed shell contiguration ilfustrating localization

(D/1 = 19.5).
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and

Bifurcation points calculated using this procedure are identified with a bold (1) in Figs
7 and 8. In the case ot the elastic shell the second bifurcation is found to occur either soon
after the limit load or just prior to it. In the elastic—plastic case shown in Fig. 8. the second
bifurcation occurs at a curvature which is significantly larger than that corresponding to
the limit load. These critical values are significantly higher than the curvature at which the
shell collapsed and as a result it is concluded that an alternative mechanism must be
responsible for the catastrophic collapse of the shell.

(8) Localization of axial wares

From the results presented so far. it has been demonstrated that at some curvature the
shell can develop uniform axial ripples. As a result. the overall stiffness of the shell is
reduced and a limit load develops (earlier than the natural hmit load). [t has been shown {see
Tvergaard and Needleman (1980), Needleman and Tvergaard (1982) and Tvergaard (1983)]
that structures which exhibit such behavior tend to develop localized buckling patterns
soon after the limit load. This behavior was indeed obscerved in the experiments conducted.
The possibility of this occurring will be checked by considertng a seetion ot a shell containing
a number of axial ripples (L = 54,). A small initial imperfection, wi(s), s included which
provides a small bias to the amplitude of one of the ripples. The imperfection is given by

) n Ty
W= - R[um +a, cos (_ . )}cos ( ) 24
) dip 2n

The displacement expansions adopted are similar to those in eqn (21) with p = /54, and
1, = 6. J, = 8 (45 integration points were used in the axial direction),

The ripples were found to localize. The etfeet of focalization on the response is shown
in Fig. 10, where results from the unitorm ovalization analysis, the uniform ripple analysis
and the localized ripple analysis are compared. As observed carlier, axial ripples have a
“softening™ effect on the response and lead to a reduction in w, . In addition, the moment
in the post-limit foad response drops at a much faster rate [limit toad indicated by (A)].
(The limit load ot the shell which exhibits localization oceurs at a curvature which is
somewhat lower than that in the uniformly rippled shell. This is due to the slightly larger
overall amplitude of the imperfection used in the region of s = 0 as a result of the additional
effect of ¢,.) The second bifurcation is now seen to occur much euarlicr which may enable
us to consider it as the cause of the catastrophic collupse observed in the experiments.

Predictions obtained from this analysis for a,, = 10 "and ¢, = [0 * are compared to
the experimental results in Fig. 11, The agreement between experiment and predictions is
very good. The limit load is scen to occur very close to the curvature at which the shell
collapsed (actual value ol predicted hmit load depends on the assumed amplitude of
imperfections). The second bifurcation follows soon after the predicted limit load. In this
analysis, the bifurcation check was applicd 1o the central hall wave which exhibits accel-
crated growth of ovalization. The ovalization predicted to occur in the crest of the localized
region is also in good agreement with the ovalization measured in the experiment.

The progressive development ol localized deformations in this shell is more clearly
illustrated in Fig. 12, which shows the ovalization predicted along the length of the shell
analyzed at different valucs of curvature. The axial ripples are scen to grow uniformly up
to the limit load, beyond which the central part of the shell ovalizes faster. Figure 13 shows
a graphical reproduction of a deformed configuration of the shell analyzed, which illustrates
the non-uniform growth of the amplitude of the axial ripples. The central ripple is scen to
grow significantly more than the others (localization). It is of interest to compare and
observe the similarity of this picture with the experimental results shown in Fig. 9'.
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Fig. 10. Comparison of responses from three types of analyses (/1 = 44): (a) moment curvature;
(b) ovalization curvature.

The effect of imperfection amplitude, gy, on the response of the structure is re-examined
using the analysis which allows for localization of the axial ripples. Results for «,, = 0.5,
1.0 and 3.0 x 10 * are shown in Fig. 14 with g, kept constant. As a, is increased, the value
of the limit moment remains relatively unaffected but it occurs at progressively smaller
values of curvature. The values of k,, are similar to those shown in Fig. 8 for the uniformly
rippled shell. The post-limit load moment is seen to drop more precipitously than in the
corresponding results in Fig. 8. In all cases shown in Fig. 14, the second bifurcation occurs
soon after the limit load, which is a distinct difference between the localized and uniform
ripple results. The formulation used in this study assumes that rotations of the normals are
moderate. Thus, significant excursions into the post-limit load regime will require higher
order shell kinematics and, at a later stage. finite deformation constitutive models.

Figure 15 shows a sct of predictions obtaincd with this analysis for a shell with
D/t = 60.5. The experimental results are included for comparison purposcs. The imper-
fection amplitudes used are again a, = 107> and 4, = 10 ~*. The major characteristics of
the predicted results are the same as those of the previous shell analyzed. However, in this
case, the second bifurcation is seen to occur very soon after the limit load. [f we accept that
this is responsible for the collapse of the structure, the closeness of the two instabilities
explains the fact that in the experiments on this shell, the axial ripples were never seen to
develop. The shell buckled suddenly and catastrophically.

The results presented above demonstrate the complexity of the deformation of the shell
in the post-buckling regime. The sequence of critical events which occur during the loading
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Fig. 11, Detailed comparison of experiment and predictions from analysis which includes ripple
localization (D]t = 44).

history can be summarized as follows :

(a) Initially, the shell exhibits uniform ovalization, which grows non-lincarly with
curvature.

{b) Atacurvature x,, the shell bifurcates at an increasing moment. The buckling mode
consists of axially periodic ripples on the compressed side of the shell.

Ky

Fig. 12, Ovalization along the length as a function of curvature (illustrates localization of axial
ripples).

BAX % .G
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(b) ovalization curvature.

The amplitude of the ripples at first grows uniformly along the length. The net
effect is a reduction in the rigidity of the shell, which results in the development of
a load maximum.

This limit load occurs at a curvature which is significantly smaller than that
corresponding to the natural limit load instability inherent to the problem.
Following the limit load, the ripples localize and the moment drops more pre-
cipitously.

A second bifurcation was detected to occur in the ripple with the most severe
deformation. This buckling mode is characterized by a number of circumferential
waves,

The second bifurcation and the relatively compliant nature of the pre-buckling
response prior to it, are responsible for the localized catastrophic collapse observed
in the experiments.

In practice, ever present small geometric imperfections, which correspond to the
two buckling modes of the problem, will be amplified in the neighborhood of the
bifurcation points calculated, with equally catastrophic results as those described
above,

(6) Natural limit load and localization

The behavior of thicker shells has been shown, in the experimental part of the study,

to be governed by the natural limit load instability inherent to the problem. This class of
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shells was found to ovalize quite uniformly up to approximately the limit moment beyond
which the ovalization localized in a region a few shell diameters long. As the localization
develops, the curvature of the shell starts to vary along the length. Thus the formulation
of the problem presented in eqns (1)—(5) was gencralized to include the case of k = x(s).
In addition, the length of the shell analyzed was increased (typical value used L/D = 9.6)
to accommodate the length of the localized region observed in the experiments.

An approximate solution to the problem was obtained by adopting the following
expansion for the curvature:

(> X ksY
K(s) = A +k; we| exp —p )% (25)
where ®(L) = ®* is the rotation of the shell at ¥ = L which was prescribed incrementally.

K, are unknown coefficients evaluated in the numerical solution and g, are constants given
as follows:

1
Gk = ﬁ exp — f(ké)*dE (26)

[(25) with (26) imply that ¥(0) = OV ®(L)].
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In the results shown below, the shell was assumed to be free of initial imperfections.
When eqn (25) is adopted in egns (1)-(3) the displacement components u are measured
from a shell with circular cross-section and whose axis is deformed to « = x(s). The
displacements were approximated with the expansions given in eqns (21) with p =7 L.
N.=N,=J,=6and [, = 8. For the longer shells analyzed K = 10 and f = | were used.
Forty-eight integration points in se[0, L] were found to lead to a sufficiently accurate
solution. [n spite of the specialized nature of the formulation and solution procedure used
these changes increased significantly the numerical demands of the problem. A Cray-XMP
computer was used to conduct the numerical analysis.

The moment-curvature and ovalization—-curvature responses predicted through this
solution procedure for an aluminum shell with D/t = 19.5, are shown in Fig. 16 together
with the corresponding experimental results. The solution is seen to coincide with that from
the uniform (ovalization) analysis up to the limit load. Indeed the limit loads from the two
solutions are indistinguishable.

After the limit load, the predictions from the two analyses differ signiticantly. The
current analysis yields a moment which drops precipitously with increasing curvature.
Correspondingly. after the limit load the values of ovalization predicted at the two extremes
of the length of the shell analyzed (see inset in Fig. [6) grow in a distinctly different manner.
At s = 0. the ovalization grows at a significantly accelerated rate where as at s = L. it stops
growing and cven experiences a small decay.

A clearer view of the way and extent to which the ovalization localizes can be seen in
Fig. 17 which shows a plot of the calculated ovalization along the length of the shell at
different values of end rotation ®*. The ovalization remains uniform along the length up
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Fig. 16. Response of shell exhibiting natural limit load instability and localization (D ¢ = 19.5):
(a) moment-curvature ; (b) ovalization curviture.,
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Fig. 17. Ovalization along length of shell at different values of ®*.

to the limit load (dF). Further increase in ®* leads to localized growth of ovalization in the
central region of the shell, whereas the ovalization away from the central section remains
initially unchanged and decreases for higher values of @*. The maximum ovalization is seen
to grow to double the value in the uniform part of the shell with a refatively small increase
in ®*. The results in this figure correspond to the experimental results shown in Fig. 23/
(excluding the extreme ends of the shell which in the experiment were constrained to
remain circular due to the solid inserts used to apply the load). Indeed, the qualitative and
quantitative simifarity between the predicted and measured results is exceptionally good.

Figure 18 shows a graphical reproduction of the central part of a calculated deformed
configuration in the post-limit load regime of the shell analyzed above (the length analyzed
was 19.20D; the length shown is 14.4D). The nature of localization is quite clear and it
compares quite well with the corresponding experimentat results shown in Fig, 1d. It is
important to note that, in the experiments, the localization will, in general, be triggered and
oceur in the region with the biggest imperfections (or at the ends, if the shell is improperly
constrained). As a result, in any given experiment, the position of the localized region is
more or less randomly located. The formulation used is such that localization is ensured to
oceur at mid-span (plane of symmetry). This, in general, does not affect the essence of the
predicted results. [t does, however, muke a one-to-one quantitative comparison between
the measured and predicted response after the limit load rather difficult, for the reasons
explained in Part I. The case presented in Fig. 23 is an exception, as the shell localized very
close to mid-span.

Another problem whose behavior is governed by a natural limit load instability is that
of inflation of a long tube which bulges in the neighborhood of the limit load. Kyriakides
and Chang (1991) demonstrated that the post-limit load behavior of such a tube, and other
structures belonging to the sume family, is significantly influenced by the length of the
structure. The main reason for this sensitivity is that, with the onset of localization, part of
the structure continues to deform even though the load is dropping. At the same time, the
part of the structure away from the region of localized deformation experiences unloading.
Thus, the overall behavior is influenced by the ratio of the lengths of structure undergoing
increasing and decreasing deformations,

The effect of the length of the shell on the calculated response of the present problem
will be examined through an example involving an aluminum shell with D/r = 25.3. We
first consider the response for a case with 2L/D = 25.6. [n order to illustrate the effect of
localization on the behavior of the structure the /local moment—curvature and moment-
ovalization responses calculated at s = O and s = L (identified as points [ and Il respectively)
are compared in Fig. 19. The responses at the two points remain the same until the limit
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moment is reached. Beyond the limit moment, the deformation in the mid-span area of the
shell grows at a rate which is faster than that of the uniformly deforming shell. At the same
time, the end of the shell starts to unload as shown in the figurc. The unloading quickly
becomes essentiilly elastic, indicated by the steep slope of the response at s = L in both
figures. The overall M —®* and AD — @* responses of this shell are shown in Fig. 20. The
post-limit load moment is scen to drop at a much faster rate than the uniformly ovalized
shell.

Similar calculations were performed for two additional shells with lengths of
2L]D = 19.2 and 12.8. The results arc also included in Fig. 20. The moment—curvature and
ovalization-curvature responses of the three shells are seen to be independent of the length
up to the limit moment. Beyond the limit moment the deformations of all three shells
localize as evidenced by the different ovalizations recorded at the mid-spans and at the ends
of the shells. Figure 21 shows detailed plots of the ovalization along the length for the shells
with 2L/D = 25.6 and 12.8 for various values of ®* 2 &f. The two sets of results shown
were selected to have approximately the sume values of maximum ovalizations (i.e. they
correspond to different values of ®*). The length of the shell experiencing localization, in
the deformation regime shown, is approximately nine diameters for both cases. In fact, the
overall geometries of the localized regions of the three shells are very similar indeed. We
thus conclude that the detailed deformation and the length of the localized region are
governed primarily by local equilibrium and not by the overall length of the shell.
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Fig. 20. Responses of shells of ditferent length exhibiting limit load instability and localization :
(a) moment curvature ; (b) ovalization curvature,

However from Fig. 20a it can be seen that the overall post-limit load M —®* response
of the shell is significantly affected by the length of the shell. As the length of the shell
incrcases the moment drops at a much faster rate with ®*. This has a corresponding effect
on the deformation in the localized region as shown in Fig. 20b. This difference can be
explained as follows. It has been shown that the length of the shell undergoing localization

[t
o

O
o

Fig. 21. Ovalization along length of shell at different values of ®* > ®. Comparison between shells
of length of 25.6 and 12.8 diameters.
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is approximately the same for the three cases. Thus, the length of shell which remains
uniform in the case with 2L/D = 25.6 is longer than that with 2L;D = 12.8. As the
moment drops the uniform section(s) undergoes unloading even though the net end rotation
increased. Thus. the increase of deformation in the localized region depends on the increase
in the end rotation and on the amount of rotation caused by the unloading of the uniform
section. For the longer shell, the second component is larger and, as a result, a smaller end
rotation is required to deform the localized section.

In order to illustrate this point further. a series of additional shells with lengths of
2L/D = 51, 102. 205 and 410 were analyzed in the following approximate fashion. The shell
with length of 25.6 diameters is clearly long enough for the response of its ends to be
assumed to be unaffected by the localized deformation which takes place at mid-span. Thus.
the response of the end of this shell was assumed to be also representative of the response
away from the localized region of longer shells. This simplification was used to calculate
the M —®* response of the long shells given above. The results are shown in Fig. 22. As L
increascs, the post-limit load response drops more precipitously. For very long shells, the
M —®* response turns backwards. Clearly, in such cases, even under curvature control
conditions. the shell will fail catastrophically upon reaching the limit load by folding into
two sections.

(7) Behavior of shells with intermediate D/t ralues

[n the experimental part of this study it was shown that aluminum 6061-T6 shells with
28 < D/t < 40 exhibited rather complex behavior which involved short wave ripples as well
as localized deformation which extended over a length of a few shell diameters. The ratio
of the characteristic lengths of the two cvents was approximately 20. Thus numerical
modetling of the problem became more cumbersome. The formulation presented in eqns
(1) (5) was used to approximately analyze a shell with half length of L/D = 9.6 and
D/t = 35.7. The shell was assumed to have an initial geometric imperfection as follows :

ny : Y y :
W= — R aqcos ., exp — /1( ) +4a,cos -, exp -/f(- . (27)
i ‘o A { {

For the case analyzed /= 3.2D was used. The shell was discretized through the following
serics expansions for the displacements :

1, 2
“ ins
Z 5, sin eos jO+R Y, Z«,sm;exp /f<~—)cos/u

Thi=0 = |y 0

n 3
Z b, sinnt + R Z Z d,; LOb — sm/()+R Z Z ‘7 "05‘”_"“ exp — /3<““> sin jO

EAPAR!

ins
=R Z a, cosnll+ R Z Z €, €08 - -cos j0

n- pa b s

5 2
______ { 2
+R Z Z &, cos cxp ﬂ(S).,,) cos jO. (28)

1= 1/=0

The curvature k{s) was again represented through expressions (25) and (26). The following
number of terms were used in the serics expansions above: NV, =1, =J,=6, I, =J, =8
and K = 5. Nincty integration points in s€ [0, L] were used and distributed unevenly along
the length. The problem was again solved by prescribing the end rotation ®*, The amplitudes
of the initial imperfections used were a, = 0.5 x 10> and @, = 0.5 x 10~ . The nature of the
imperfections as well as the displacement functions adopted allow the growth, localization
and possibly the interaction of short wavelength ripples and long wavelength instabilities.
A sct of results are shown in Fig. 23. The results from the uniformly deformed shell are
included for comparison purposecs. The presence of the small imperfections has relatively
little effect on the predicted response up to the first bifurcation point (indicated by “17"). In
the neighborhood of the bifurcation point the amplitude of the short wavelength ripples
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start to grow. The bias provided in the imperfection is amplified and the growth of the
ripples localizes. This is demonstrated in Fig. 24 in which the ovalization along the shell
length is plotted for various values of end rotation ®*. A moment maximum develops and
the shell response starts to decay precipitously. Prior to the limit moment a second local-
ization phenomenon which involves a few diameters of the shell on either side of the
rippled section is seen to occur in Fig. 24. This is similar in nature to what was observed
experimentally in Fig, 17°. As in the case of the thinner shells analyzed carlier a second
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Fig. 23. Response of shell with D/t = 35.7: (a) moment-curvature; (b) ovalization-curvature.
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Fig. 24. Ovabzation along length of shell at different values of @*.

bifurcation point was identified in the largest of the short wavelength ripples soon after the
limit moment as shown in Fig. 23, This is again similar qualitatively at least to the
experimental resuits. The limit load predicted is seen to oceur at a much smaller curvature
than that predicted for the uniformly ovahized shell. Quite clearly the rotation ®F cor-
responding to this limit load should be considered as the maximum allowable value for
such shells.

The results presented indicate that short wave ripples are again the triggering mech-
anism lor the sequence of events that follow their onset,
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APPENDIX A

The metric and curvature tensors of a circular cylindrical shell of radius R with an initial geometric imper-

fection given by # = (s, #) are as follows:
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