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Abstract-The second part of this study is concerned with the prediction of the response and various
instabilities found in Part I to gov~rn the elastic-plastic flexure of circular cylindrical shells. Sanders'
shell kinematics and the principle of virtual work w~re used to formulate the problem. A Rayleigh­
Ritz procedure was used to discrctize the problem. The resultant non-linear equations were solved
iteratively using Newton's method. The three types of behavior involving bifurcation into short
wavelength ripples. localization following the attainment of a natural limit load and interaction of
the two were studied. In each case the predicted response was found to be in very good agreement
with the experimental result.
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metric tensor components
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bifurcation mode
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value of III· at limit moment.

INTRODUCTION

This part of the study is concerned with the prediction of the response and instabilities in
long shells under pure bending. Of particular interest arc shells with lower diameter-to­
thickness ratios (Dlt < 100 for common structural metals) whose behavior is strongly
influenced by the plastic characteristics of the material. The experiments presented in Part
I. in which aluminum 6061-T6 shells were used. demonstrated that the major deformation
characteristic of the response of such shdls is the ovalii'.ation induced by the bending of their
cross-sections. The reduction in rigidity caused by ovalization. combined with the reduction
in the modulus of the material as it goes further into the plastic range. lead to a limit
moment in the response (natura/limit/oat! inswhility). Thus. the first requirement from an
analysis of the problem is the capability of predicting accurately the uniform ovalization
induced by bending.

In the case of thinner shells. short wavelength rippling followed by catastrophic collapse
precede the natural limit load. The collapse is local in nature and is characterized by a
number of "diamond" shapes as shown in Fig. la for Dlt = 44 (such buckling modes are
common to thin clastic shells). The wavelength of the ripples is only a small fraction of the
diameter of the shell. The onset of the rippling can be established by the customary linearized
bifurcation criterion [sec. for example. Bushnell (1981)/ and Ju and Kyriakides (1990)/).t
The study of the post-buckling behavior of ,1 rippled shell and of the mechanism ofcollapse
will require an analysis which allows the development. growth and possible localization of
such ripples.

t ( )' refers to items from Part I.

II·B
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As the shell D t is reduced. the ripples occur at progressively higher curvatures. which
get progressively closer to the curvatures corresponding to the natural limit loads. The
collapse mode is now characterized by one sharp local kink. as shown in Fig. 1b. For even
thicker shells. a limit load instability is recorded first. In the neighborhood of the limit load.
the shell ovalization ceases to be uniform. The deformation localizes in a region a "few"
diameters long at a dropping moment. The shell collapses catastrophically by developing
a kink. as shown in Fig. Ie. in the trough of localization.

The same behavior was observed for thicker shells. However. such shells retain signi­
ficant post-limit load strength and collapse becomes progressively less abrupt (see Fig. Id).

Prediction of localization associated with the natural limit load requires analyzing a
shell which is a number of diameters long. Thus. the problem has at least two characteristic
axial wavelengths which can differ by one to two orders of magnitude. Clearly this can be
expected to complicate numerical discretization schemes. This task is further complicated
by the experimental observation that. for shells with intermediate D/t values. the two modes
of instability interact and. as a result. the analysis must have the flexibility of addressing
this interaction.

A special purpose shell analysis. capable ofaddressing the characteristics of the problem
outlined. has been developed. The primary objectives of the study were to evaluate the pre­
buckling response of the shells. identify the dominant instabilities. the initial post-buckling
behavior of the shdls and. ultimately. the major f~u;tors which inlluel1l.:e the onset of these
instabilities. These goals can be achieved. by and large. within the limitations of Sanders'
(1963)' non-linear shell equations. which were adopted in the formulation. The validity of
the formulation will he verified hy direct comparison to the experimental results. The
results will be used. in com hi nation with the experimental ohservations. to illuminale the
phenomena deserihed in Part I.

PROBLEM FORMliLATION

(I) Kinematics
From above the major requirements for the formulation arc as follows:

(a) It should be capable of modelling the ovalization of the cross-section.
(b) It should be capable of simulating the growth of short wavekngth axial ripples on

the compressed side of the shell.
(c) It should allow the deformation of the shell to localize over sections a few di,lmeters

long. as observed in the experiments.

In view of the axial length of the localized deformation recorded in the experiments.
Sanders' non-linear shell kinematics will be used (mid-surface strains arc assumed to be
small; rotations of normals to the mid-surl~lce arc assumed to be small but finite).

We consider a shell of radius R. wall thickness t and half length L. Points on the shell
mid-surface are identified by (0, .1') (sec Fig. 2a). The plane s = 0 is assumed to be a plane
of symmetry. Because the problems of interest have distinctly dilTerent length scales. shells
in categories (I) and (3) in Part I will be treated separately at first.

For algebraic convenience and easier interpretation of the results. it is desirable that
the displacement components be measured from a circular toroidal reference shell (see Fig.
2b). To achieve this. we dcform the shell in steps and usc a deformation composition scheme
similar to thc one used by Fabian (1981)' to establish the final strains in the shell. The initial
(undeformed) circular cylinder can be described through the metric tensor a~f1 (fundamental
tensor) and the curvature tensor b~p as follows [(:to (J) = 1,2):

n [0[h,p) = 0 (I)
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Fig. 2. Conligurations of shells analyzed.

The circular lorus has melric and curvalure lensors given by:

I _ [I +21\:Rcos 0 0]
[lI.,d - 0 I ' [

I\: cos 0 ]
I + I\:R cos 0 0

[h~/ll = I
o ­

R

(2)

where I\: and 0 are defined in Fig. 2b. The membrane and bending strains in the torus, E.,
and K'/I' are related to (I) and (2) as follows:

(3)

The circular toroidal shell is now allowed to deform further by developing additional
displacements {u, L", Il'} in the s. 0 and radial directions respectively. The deformed shell is
defined by

(4)
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where £:/1 and K~I are the additional deformations imposed on the circular torus. Their
general form is as follows [see Appendix in Sanders (196W] :

£* = I [u -l'/\:sine+II'I\coSO]+!¢T+~¢::,
rs I + K Rcos (} ..J - -

I 1 ' 1 '£* = -[l' +w]+ ,A.~+ "~-,W R,II -~--~

K* = I [A. ,I,. . ()]
.rs I (} ~I.>-~::Kstn ,

+/\:Rcos

K*III = ¢:::"
I R '

1
(P I = (J [ - 11'., +UK cos OJ.

I +KRcos

I
(P:: = R[-lI'.o+c],

I [ (I +d~cosO) . ](P = ..--.. v, - u,/· .. - + I//\: Sin 0 .
2(1+/\:RcosO) ,. R

(5)

If the shell deformation is uniform along s (i.e. uniform ovalization as shown in Fig. 2c)
then II = 0 and ( ).• = 0 in (5); otherwise (5) can be used to describe general deformations
(e.g. Fig. 2d). The total deformation is given by

The strains f.'iJ at any point in the shell are given by

-
f.'11 = (£,II+:K'II)/(A,AIY::, AI ~ I, A:: ~ 1+ ~

(6)

(7)

[see Bushnell (1974)].
If the shell has initial geometric imperfections then (I) must be altered appropriately, say
to a~iJ and fj,~ (see Appendix A), and eqn (6) becomes

£ - l[a:: -tel] l" [h:: rll],II -:: 'II - { ,/1' J'\ 'II = ,iJ - n'lI . (8)

(2) Constitlltit'e equations
The inelastic material behavior was modelled through the J:: flow theory of plasticity

with isotropic hardening. Under the customary assumption of plane stress, the incremental
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constitutive equations reduce to

1149

(9)

where s =17- !tr(IJ')1. J" = !s·s, E is the material Young's modulus, \' the Poisson ratio
and El is the tangent modulus. In the numerical simulations that follow the uniaxial
response was fitted with the Ramberg-Osgood fit (eqn (3)'; data given in Table I') from
which

(to)

Bifurcation buckling calculations were carried out using the J" deformation theory of
plasticity which historically has been shown to lead to predictions which are in better
agreement with experiments [see Hutchinson (1974)'J. The incn:mcntal form of the appro­
priate equations is as follows:

I
f.t/I = if" [( 1+ \")l1 tl,- \',I1,.;-ij,/,J +QS>/IS,."I1;",;,,

(II)

where E, is the secant modulus given by

and

(12)

The membrane and bending stress resultants (intensities) are obtained by integrating the
stresses through the wall thickness as follows:

(13)

(3) Principle of l'irrual work
Equilibrium is satisfied through the principle of virtual work (PVW) which can be

stated as follows:

(14)

where A is the surface area of the shell and aW the virtual work of the external forces.
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SOLUTION PROCEDURE A~D RESULTS

The shell was loaded incrementally by prescribing either the overall curvature /( in eqn
(2). or the rotation <1>* at s = L. As a result. JWin eqn (14) is zero. The integrations were
performed by Gaussian quadrature. The structure was discretized by adopting suitable
expansions for the displacements {u. r. w}. The expansions adopted for each application
are given below.

(I) ['ni/vrl1l ol'£lli:ativ/I
In this case. ( )., = 0 and /I = 0 in eqn (5). The following displacement expansions

were used [see Gellin (1980)' and Shaw and Kyriakides (1985)'l :

v. ,.

r = R L. bn sin nO.
ff= ...

,v.

II' = R L an sin nO.
n= ()

(15)

Typically. N,. = Nw = 6 was found to yield sufficiently accurate results. Seven Gaussian
integration points through the thickness and 12 in the () E [0, rrl direction were used.
Substituting (15) into (14). the PVW can be restated as follows:

where

i = 1.2..... N,. +N. ( 16)

For each presl:ribed value of 1\. (5". arc arbitrary. As a result. eqn (16) yields (N,. + N•. ) non­
linear algebraie equations which arc solved numerically using the Newton·Raphson
method.

The kinematil: relations used in the formulation of the problem allow only for moderate
rotations of the normals to the mid-surface. In order to test the adequacy of these kinematics,
nlllnH:nt ~cllrvature and ovalization -curvature responses calculated for a number of shells
were l:Ompared with the corresponding results from the solution procedure of Shaw and
Kyriakides (19S5)', which is based on large rotation kinematics. For the aluminum shells
used in the experiments, the two sets of results were in very elose agreement (e.g. for shell
No. l) in Table I' with Djt = 25.3. the two limit curvatures ditfered by 1.5% and the limit
moment by ll.O02%). In all cases, the ovalization induced by bending is relatively small due
to the influence of inelastil: m.lterial effects. The rotations are. in general. quite moderate
and their influence is relatively small; as a result. the predictions from S.tnders· shell
equations should be dependable.

A bigger difference between the results from the two formulations was observed in
linearly elastic shells. Such shells undergo significant ovalization prior to reaching their
limit moment. The rotations of the normals are proportionately larger and the results from
the pn:sent formulation arc somewhat less accurate. For example, in the case of a shell
with Dit = 200, the limit moment and corresponding curvature predicted by the current
formulution were 1.2'10 and 5% lower than the more accurate results. respectively. In view
of the favomble comparison observed in the clastic-plastic cases. and of the simplicity
afforded by using this type of kinematics in the analysis. it was concluded that Sanders'
kinematics were quite suitable for analyzing the problems of interest to this study.

(2) B(ji,rcation analysis
The possibility of bifurcation buckling from the uniformly ovalized state to one which

has periodic waves on the compressed side of the shell was checked through the following
procedure. Following Hill (1958)' and Hutchinson (1974)', it is assumed that. at the



Instabilities in cylindrical shells-II 1151

equilibrium state in question. there exist two possible incremental solutions u I and u1

[u == (II. r. 1\·)1). We denote their difference by {-} which we identify as the buckling mode
given by

tv..

Ii' = R cos ps L en cos nO.
n= 0

N,~

l~ = Rcosps L Dnsin nO.
n= I

,flit• .;

Ii = Rsinps L EncosnO
"= 0

(17)

where ii are measured from the same circular. toroidal reference shell used in the rest of the
formulation. Clearly. { -} must satisfy the PVW and, as a result

where

i.j = t. 2•...• (N", + N,,+N. +2) ( 18)

and Nil are the memorane stresses from the pre-buckling solution presented in the prcvious
section. In abbreviated form. cqn (I X) can be expressed as

ij'llij = O. ( 19)

If the solution tcsted is unique. then II is positive definite. At the point of bifurcation,
det II = O. Typically. the det H is evaluated at every loading increment of the pre-buckling
solution prol:cdure using Hill's concept ofa comparison solid (yields lower bound estim.ttes
of the bifurl:ation loads). In evaluating 1-1. the J 2 deformation theory of plasticity was used
to I:akulate the instantaneous moduli of the material. A trial value of p = 1[1).< 0< given in
eqn (8)') was used. Onl:e a change in sign was identified, p and the curvature K were varied
until the critical values ;.t> and Kh were found to a sufficient accuracy.

Bifurcation buckling analyses and results have been presented by a number of previous
investigators. Wherever possible, published results were compared with predictions from
the present formulation. For example. Stephens e/ al. (1975)' used the STAGS program to
analyze elastil: shells of finite length under pure bending. The critical moment of the longer
shell they analyzed was found to be in good agreement with the present predictions. Fabian
earrieu out a detailcu analysis of long elastic shells. His calculations for a shell with
D,t = 120 wcrc rcpeated. The critical moment. curvature and wavelength were found to be
in very good agreement with the predictions from the present analysis (difference less than
30/0).

Plastic bifurcation calculations have been conducted by Bushnell (1980)' using his
BOSOR-5 axisymmetric shell analysis. An eX<lmple from this work involving <In el<lstic­
pcrlcctly plastic shell with Dlt = 55.3 was analyzed with the present formulation by approxi­
mating the material with a Ramberg-Osgood fit with n = 200. The critic<ll moment and
curvature were found to be in excellent agreement with Bushnell's predictions. but the
critical w<lvelengths dilTered due to the approximation m<lde in the stress-strain response.
Gdlin (1976). developed an <lpproxim<lte pl<lstic bifurcation analysis using the DMV shell
equations for cylindrical shells and the pre-buckling stress state from his long tube analysis
(1980)'. The results presented in Table 2 of his paper were recalculated with the present
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formulation. Good agreement was found for the thi~kest (D t = 60) of the shells analyzed
(critical curvature 1.7"" higher than Gdlin's). [n the case of the shell with Dl = 200 the
~ritical ~urvature predicted by the present formulation was approximately ~% lower than
his prediction.

Figures 3 and ~ show comparisons of the predicted and measured moment---eurvature
and ovalization·~urvatureresponses for shells with D.t = 50 and ~ ...L respectively. These
shells developed axial ripples prior to the natural limit load instability. Thc measured
and predicted bifurcation points and valucs are identified on the respective responses
[( TJ == predicted bifur~ation: (1l == ripples first detected in e'\periment]. The predictions of
the responses as well as of the bifun:ation points are seen to be in very good agreement
with the experimental results.

Very good agreement between cxperiments and predictions was obtained for all the
shells tested whi~h exhihited bifurcation buckling as demonstrated in Fig. 23'. An area of
disagreement between e'\periment and analysis is shown in Fig. 5, where the critical half
wavelengths yielded by the analysis (i.{» are compared to the experimental valucs (i.c,p) for
shells with 20 < Dt < 55. The predicted wavelengths arc uniformly longer than those
measured in the experiments. Simil'lr bifur~ation calculations. based on the J~ flow theory
of plasticity, yielded unn.:alistically high values of critical curvatures and even longer values
of critical i. [cllnsistent with results in other plastic buckling problems-·see Batdorf( 1949)].
[n view of this, the wrner theory of plasticity [see Christl)tl'crsen and Hutchinson (1979)]
can he e'\pe~ted tll also yield wavelengths which an.: longer than i.f)' This discrepancy is
l.'on linned hy similar 1l1l:asurements made by Reddy in his e'\perimental study of the problem
or 1979'. He comparcd his measun.:ments with predictions 1'01' axially loaded cylinders [eqn
pq'l and lillllld a similar dilli.:relll:e hctween experiment and analysis. Figure (J shows a
comparison or i'f). obtained rrum the current hending analysis, to the critical wavelength
or axially loaded cylinders PI' various!> ts (the a\'erage material properties or the aluminum

12 -,---------------------,
M
1Vfo

t 10

8

6

4

AI-6061-T6

.Q.'5Q
I -----,..,--

2

-- Experiment

- - - Uniform Tube Prediction

0 2 4 6 .8 10 12 14 16

(a) ~~I('I

06 /"t.D .-'

lJ. .-'
/"

t
/'

.04 A/ .-'

""'
.02

0 2 .4 .6 8 10 12 1.4 16

(b) ~K/Kl

Fig. J. Iknding n:sp,'ns<: (>fallllllinlll11 shdl wilh [) I ~ 50: (a) mOIll<:nl <:urvalurc: (h) ovalization-­
<:unalllr<:. [1.\ I "" IlIllil !nOIll<:nl. hirlln:alion: c-,p<:rilll<:nl (L). pr<:Ji<:tcJ (i 1.1



Instabilities in cylindrical shells-II 1153

.2 .4 .6 .8 1.0 1.2 1.4 1.6

(0) ~~Kl

"/""
/"/"

./
/"

/"
y"

A

---~.--::.....-::

2 .4 .6 .8 1.0 1.2 1.4 1.6
(b) -~,

1.2
M
M.

t 1.0

.8

.6

.4

2

0

.06

~r04

.02

0

AI-6061-T6

~:44 _-"_-=-:;-----""lI"" - -

-- Experiment

- - - Uniform Tube Predicllon
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curvature.

shells tested. given in Part I, were used}. It is interesting to observe that the critical
wavelengths of the two problems do not differ significantly. The value corresponding to
axisymmetric buckling of axially loaded elastic cylinders.AE is also included. Even this value
compares quite well with the other values for the whole range of Dlt of interest here.

We, thus. conclude that Reddy's results are very similar to ours and that a discrepancy
between experiment and analysis regarding the critical wavelengths. )'c. does exist. The
reason for this discrepancy is not known at this time. However, in spite of this difference,
the more important quantity of critical curvature, "h, yielded by this analysis, was con­
sistently found to be in very good agreement with the experimental results.
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Fig. 5. Comparison between measured and predicted axial ripple wavelengths as a function of O/t.
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(3) Post-buckling belzal'ior and effect of imperfections
The post-buckling behavior of the shell can be analyzed by allowing for deformations

which vary along the kngth of the shell. A first step in such an effort is to consider a shell
with initial geometric imperfections which are related to the critical buckling mode obtained
from the bifurcation analysis presented above. We thus consider a circular cylindrical shell
with axisymmetric imperfections defined as follows:

ns
II' = -ao,Rcos 1

A(J

(20)

where "'0 is the critical wa vclength of the ripples calculated from the bifurcation analysis.
(A similar study was conducted by Fabian (198 1)1 but in eqn (20) instead of ;.n. he used I'e
(eqn (8)/) obtained from axially-loaded clastic shells.) If it is assumed that the axial ripples
grow uniformly along the shell length. then it is sullicient to analyze a shell with L = "'0'
In this case. the complete strain-displacement equations given in eqn (5) are used with the
following expansions for the displacements:

I. J.

li = R I I c,jsinipscosjO.
,- Ij-lI

N,. I" J,.

Ll = R I b.sinnO+R I I clijcosipssinjO.
n"'" 1 t""' I i- I

-". I. J.

W = R I a.cosIlO+RII e'jcosipscos jO.
n-I) ,- I/-ll

(21 )

where p = nl).o. Typical values for the number of terms found to be sutlicient were
N" = N., =J. = 6 and I. = 4.

The first case analyzed was a linearly elastic shell with the following characteristics:
D = 1.250. DII = 200. v = 0.32. The critical moment and curvature values predicted for
the perfect case arc as follows:

K~/K, = 1.74. KLIKI = 1.95.

MhIM· = 0.924. MLIM· = 0.935.

I.d j Dt = 1.693.

where AI· = ER/~/( 1- v~) and ).t.' is the half wavelength of the axial ripple bifurcation mode.
In the imperfect cases. )'0 was replaced by I.t.. in eqns (20. 21). The moment-eurvature and
ovalization-eurvature responses for imperfection amplitudes of a Oi = O. 10 - 4 and 3 x 10 4
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Fi~. 7. I'rellkted hcmling response of perfect and imperr...-.:t elastic shell: (OIl moment curvature:
(bl llValil.ation curvature.

<Ire shown in Fig. 7 (ov<lliz<ltion in the v<llley of imperfl."Ction). As observed by previous
investigators [Axelrad (1980)': F<lbian (1977)': Gellin (1980)'] bifurcation buckling pre·
cedes the limit 10<ld inst<lbility. The post-buckling response has a distinctly negative slope.
This le<lds to the expectation that longer shells will experience localized deformation fol­
lowing bifurcation buckling. The presence of axial imperfections leads to a limit load
inst<lbility which occurts at reduced values of moment and curvature. as shown in the figure.

A simil<lr study of the effect ofaxisymmetric imperfections on elastic-plastic shells was
conducted on an aluminum shell with D/t = 44 (see Table I') which is representative of the
thinner group of shells studied experimentally. The results are shown in Fig. 8. The main
intluence of the imperfections on the calculated responses is seen to occur once the shell
enters the pl<lstic r<lnge of the material. Due to the imperfections the shell becomes more
compliant and the limit load instability occurs at a smaller curvature than that of the perfect
shell. The value of "I. is seen to become progressively reduced as the imperfection amplitude
is increased. Figure 9 shows a graphical reproduction of a calculated equilibrium state of
this shell which uniformly distributed axial ripples (generated on an image processing system
consisting ofa Grinnell 270 display system coupled with a microYAX II-MOYIE. BYU data
processing system).

(4) Second hijurcmion
In the experimental part of the study it was observed that the thinner shells tested

(D/( > 44) developed ripples at an increasing load. Soon after the appearance of the ripples
the shell collapsed by developing one sharp local buckle characterized by a number of
circumferential waves as evidenced by the diamond nature of the collapse mode shown in
Fig. Ia. This sequence of events is reminiscent of the behavior observed in the related
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problem of plastic buckling of axial loaded cylindrical shells [see Lee (1962)', Gellin (1976),
Tvergaard (1983)' and Yun and Kyriakides (1990)']. Motivated by the experimental obser­
vations and the works on this related problem we developed an analysis for bifurcation
fro'll the uniformly rippled state to one involving the following buckling mode:

I~ J.

li· = R L L Aij cos (i - Dpscos jO,
i- I j- 0

I" Jcl

t~ = R L L Bij cos (i- DpssinjO,
,. I j- I

I. J.

U= R L L Cij sin (i- !)pscosjO
i_ I j.O

(22)

where p = 7[/;'0 [i.e. it is assumed that the axial wavelength of this buckling mode is twice
that of the first one-see Koitcr (1963) and Gellin (1976)].

Using the same arguments as before the bifurcation check is again

where

(23)
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Fig. "I. Graphical rcpwductillO Ill'caklllatcII dd\>rIl1cd cllnliguratillllllf shcll cJlhibiting aJli;11 ripplcs
(It' alllplilicd x 2; nil = 44).

Fi~, IJ. Cir'lphical rcprndllctillll Ilf calculatcd dcformcd configuratillllllf shcll cJlhibiting locali7.atilln
IlfaJlial ripplcs (n!l = 44),
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Fig. 11<. <.ir;lphical rcpwulIctioll of calculatcd ddormeu shell ~'ol\ligllrallol1 illllslraling IllCdilalilln
(0/1 = 1\'/,5).
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Bifurcation points calculated using this procedure are identified with a bold (P in Figs
7 ana 8. [n the case of the elastic shell the second bifurcation is found to occur either soon
after the limit load or just prior to it. (n the elastic-plastic case shown in Fig. 8. the second
bifurcation occurs at a curvature which is significantly larger th~tn that corresponding to
the limit load. These critical values are significantly higher than the curvature at which the
shell collapsed and as a result it is concluded that an alternative mechanism must be
responsible for the catastrophic collapse of the shell.

(5) Locali:lllion ofaxialll'w'es
From the results presented so I~lr. it has been demonstrated that at some curvature thl.:

shel1 can develop uniform axial ripples. As a result. the overal1 stitrness of the shell is
reduced and u limit load develops (earlier than the natural limit load). It has been shown [see
Tvergaard and Needleman (19S0), Needleman ~lI1d Tverga'lrd (19S2) ~lI1d Tvcrg~I'lrd (1983)]
that structures which exhibit such behavior tend to lkvdop localizcd buckling puttcrns
soon after the limit load, This behavior was imked observed in the experiments conducted,
The possibility of this occurring will be cheded by considering a section ofa shell containing
a number of a:xial ripples (L = 5i.,,). 1\ slllall initial imperkctioll. li'(.~). is includcd which
provides'l small bias to the amplitude of one of the ripples. The il11pcrlectioll is givcn by

r
·· ()J ()IT.\' ITS

Ii' = - R (/", +(/, cos _,. cos . .
.. ))." )'/1

(24)

The displacelllent exp.lnsiolls adopted arc similar to tlwse in elJn (21) with p = IT/5;'/l and
lu = 6. J u ::.: X(45 integmtioll points wen: used in the axial direl:tion),

The ripples were found to localize, The effect or localiz'ltion on the response is shown
in Fig. 10, whae results from the uniform ovalization analysis. the unif()rm ripple analysis
and the localized ripple analysis arc compan:d, As obsaved earlier. axi.tl ripples have a
"softening" efl"tx:t on the responsc and lead to a reduction in "'/' In addition. the moment
in the post-limit load response drops 'It .1 much f~lster rate [limit load indicated by (A)I.
(The limit load of the shell which exhibits 10c.l1il.'ltion occurs .It a curV..ltUrt: which is
somewhat lower than that in the uniformly rippled shell. This is due to the slightly larger
overall amplitude of the imperfection llsed in the region of.~ = 0 as a result of the additional
etfed of tI,.) The second bifurcation is now seen to occur much earlicr which may enable
us to consider it as the cause of the catastrophic collapsc observed in the experiments.

Predictions obwineu from this analysis for (/11' = IOJ and (/, = 10 4 arc compared to
the experimental results in Fig. II, The agreement between experiment and predictions is
very good. The limit loau is seen to occur vcry close to the curvature at which the shell
collapseu (adual value or predi<:tcd limit (oall depends on the assumed amplitude of
imperfections). The second bifurcation follows soon aflcr the prcuicted limit load. In this
'Inalysis. the bifurcation check W'IS 'lpplied to the central h'llf wave which exhibits accel­
erated growth of ov,tliz"ltion. The ovali/alion pn:uicteu to occur in the crest of the loc'lli/ed
region is also in good agreement with the ovalization mcasured in the experiment.

The progressin: development of localized deformations in this shell is more clearly
illustrated in Fig. 12. which shows the ovalization predicted along the length of the shell
analyzed at different values of curvature. The axial ripples arc seen to grow uniformly up
to the limit load. beyond which the ccntr'll part of the shell ovalizes fuster. Figure IJ shows
a graphical reproduction of .. deformed configuration of the shell analyzed. which illustrates
the non-uniform growth of the amplitude of the axial ripples. The central ripple is seen to
grow significantly morc than the others (localization). It is of interest to comp.ue and
observe the simil.. rity of this picture with the e:<perimental results shown in Fig, 9'.
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The effect ofimperfcction amplitude. aOi. on the response ofthc structurc is rc-examincd
using thc analysis which allows for localization of the axial ripplcs. Results for a'II = 0.5,
1.0 and 3.0 x 10 - J are shown in Fig. 14 with a, kept constant. As lIu. is increascd. thc valuc
of the limit moment remains relatively unaffected but it occurs at progressively smaller
values of curvature. The values of KL are similar to those shown in Fig. 8 for the uniformly
rippled shell. The post-limit load moment is seen to drop more precipitously than in the
corresponding results in Fig. 8. In all cases shown in Fig. 14. the second bifurcation occurs
soon after the limit load, which is a distinct difference between the localized and uniform
ripple results. The formulation used in this study assumes that rotations of the normals are
moderate. Thus, significant excursions into the post-limit 10'ld regime will rcquire higher
order shell kinematics and. at a later stage, finite deformation constitutive models.

Figure 15 shows a set of predictions obtained with this analysis for a shell with
D/t = 60.5. The experimental results are included for comparison purposes. The imper­
fection amplitudes used are again aOi = 10 - J and a, = 10 - 4. The major characteristics of
the predicted results are the same as those of the previous shell analyzed. Howcver, in this
case. the second bifurcation is seen to occur very soon after the limit load. [fwe accept that
this is responsible for the collapse of the structure, the closeness of the two instabilities
explains the fact that in the experiments on this shell. the axial ripples were never seen to
develop. The shell buckled suddenly and catastrophically.

The results presented above demonstrate the complexity of the deformation of the shell
in the post-buckling regime. The sequence of critical events which occur during the loading
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history can be summ,lrized as follows:

(a) Initially. the shell exhibits uniform ovalization. which grows non-linearly with
curvature.

(b) At a curvature Kh. the shell bifurcates at an increasing moment. The buckling mode
consists of axially periodic ripples on the compressed side of the shell.

AQ. .08

00

t .04

..................................................

o 1
_x/IO>'o

Fig. 12. Ovalization along the length as a function of curvature (illustrates localization of altial
ripples).
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(c) The amplitudt:of the ripplt:s at tirst grows uniformly along the length. The net
effect is a reduction in tht: rigidity of the shell. which results in the development of
a load maximum.

(d) This limit load occurs at a curvature which is significantly smaller than that
corresponding to the natural limit load instability inherent to the problem.

(e) Following the limit load. the ripples localize and the moment drops more pre­
cipitously.

(f) A second bifurcation was detected to occur in the ripple with the most severe
deformation. This buckling mode is characterized by a number of circumferential
waves.

(g) The second bifurcation and the relatively compliant nature of the pre-buckling
response prior to it. are responsible for the localized catastrophic collapse observed
in the experiments.

(h) In practice. ever present small geometric imperfections. which correspond to the
two buckling modes of the problem. will be amplified in the neighborhood of the
bifurcation points calculated. with equally catastrophic results as those described
abovc.

(6) Natural limit load and locali:atioll
The behavior of thicker shclls has been shown. in the experimental part of the study.

to be governed by the natural limit load instability inherent to the problem. This class of
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shells was found to ovalize quitt.: uniformly up to approximately the limit moment beyond
which the ovalization localizt.:d in a region a few shell diameters long. As the localization
develops. the curvature of the shell starts to vary along the length. Thus the formulation
of the problem presented in eqns (I )-(5) was generalized to include the case of I\: = I\:(s).

In addition. the length of the shell analyzed was increased (typical value used LID = 9.6)
to accommodate the length of the localized region observed in the experiments.

An approximate solution to the problem was obtained by adopting the following
expansion for the curvature:

(I>* A" [ (ks)! ],,(s) = -- + L "k exp - {J - -9k
L k-I L

(25)

where <I>(L) = (J)* is the rotation of the shell at s = L which was prescribed incrementally.
"k are unknown coefficients evaluated in the numerical solution and 9k are constants given
as follows:

9k =II exp - f1(k~)2 d~
II

(26)

[(15) with (26) imply that <!'(O) = 0 V<!'(L)].
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In the results shown below. the shell was assumed to be free of initial imperfel.:tions.
When eqn (25) is adopted in eqns (I )--(5) the displacement components u are measured
from a shell with circular cross-section and whose axis is deformed to 1\ == 1\(.1'). The
displacements were approximated with the expansions given in eqns (21) with p == IT. L.
N,. = 1\1. = Ju = 6 and lu = 8. For the longer shells analyzed K = 10 and fJ = I were used.
Forty-eight integration points in SE [0. L] were found to lead to a sufficiently accurate
solution. In spite of the specialized nature of the formulation and solution procedure used
these I.:hanges increased signitkantly the numeril.:al demands of the problem. A Cray-X M P
computer was used to conduct the numerical analysis.

The moment-curvature and ovalization-curvature responses predicted through this
solution procedure for an aluminum shell with D/t = 19.5. are shown in Fig. 16 together
with the corresponding experimental results. The solution is seen to coincide with that from
the uniform (ovalization) analysis up to the limit load. Indeed the limit loads from the two
solutions are indistinguishable.

After the limit load. the predictions from the two analyses differ signifkantly. The
current analysis yields a moment which drops prel.:ipitously with increasing curvature.
Correspondingly. after the limit load the values ofovalization predicted at the two extremes
of the length of the shell analyzed (see inset in Fig. (6) grow in a distinctly different manner.
At s = O. the ovalization grows at a significantly accelerated rate where as at s = L. it stops
growing and even experiences a small decay.

A clearer view of the way and extent to whidl the ovalization IlKalizes can be seen in
Fig. 17 which shows a plot of the cakulated ovalization along the length of the shell at
different values of end rotation «(>*. The ovalization remains uniform along the length up

Predictions

- - - Uniform Tube

- Localized Deformation

"-- Expenment

---~==;;;:=:..;._:..;:.'- - - -

6

.4

.8

.2

M 1.2 -r--
A
-

I
--
6
,...0...,6-I-T-:-6----------------..

M. 0

t
,=195

1.0

0 .2 .4 6 .8 10 L2 14~. 1.6
(0) -ILK,

.10
dl2 Experiment

D. Localization

t 08 350J

.06
AI-IO-o"B L
~:

/'
B ./

./
/'

.04 ./

(j) Experiment

.02 A

0 2 .4 .6 .8 1.0 12 1.4 • L6

(b) -~/LK,

Fig. 16. Response (lr shell exhiniting natural limit I(lad instanility and localization (D I = 19.5):
(a) moment ·curvature; (n) ovalization -curvature.



Instabilities in cylindrical shells-II 1165

.08

~
to 04

o

?if :192

~:195

:::::::::::::::::
.::'.::':':':':':'.:.:.::':':'.: :':' -¢-

L

Fig. 17. Ovalizalion along lenglh or shell al different values or lb·.

to the limit load «I>f.). Further increase in <[>'" \c<lds to 10c<llized growth of ovaliz<ltion in the
central region of the shell. whereas the oV<llization away from the central section rem<lins
initially unch<lnged and decreases for higher v<llues of <[> .... The maximum oV<lliz<ltion is seen
to grow to douolc the ,"<llue in the uniform part of the shell with <I relatively smal1 increase
in <I' .... The results in this figure correspond to the experiment<ll results shown in Fig. 23'
(excluding the extreme ends of the shell which in the e:<periment were constr<lined to
remain dn:ular due to the solid inserts used to 'Ipply the 10<ld). Indeed, the qU<llit<ltive and
quantitative similarity oetween the predicted and me<lsured results is exception<ll1y good.

Figure IX shows <I graphical reproduction of the central part of a calculated deformed
configuration in the post-limit load regime of the shell '1I1<1lyzed above (the length analyzed
was 19.2D; the length shown is 14.4D). The n<lture of loc<llization is quite clear <lnd it
wlllpan.:s quite well with the corresponding experimental results shown in Fig. Id. It is
import'lltl to note that, in the experiments, the loc<lliz<ltion will, in general, be triggered and
occur in the region with the biggest imperfections (or at the ends, if the shell is improperly
constrained). As .1 result, in any given experiment, the position of the localized region is
more or less randomly loc<lted. The formulation used is such that loculization is ensured to
occur at mid-sp<ln (pl'lne of symmetry). This, in general. does not alfect the essence of the
pn.:dicted results. It docs, however, make u one-to-one quantitative comp<lrison between
the me<lsured and predicted response after the limit load rather difficult, for the re<lsons
explained in Part I. The case presented in Fig. 23' is <In exception, as the shel1localized very
close to mid-span.

Another problem whose beh<lvior is governed by a n<lturallimit load inst<lbility is that
of inlhltion of <I long tube which bulges in the neighborhood of the limit 10<ld. Kyriakides
and Chang (1991) demonstr<lted th.1t the post-limit 10<ld beh<lvior of such <I tube, and other
structures belonging to the s<lme f'lmily, is signifk<lmly inl1uenced by the length of the
structure. The m<lin re<lson for this sensitivity is that, with the onset of localization, p<lrt of
the structure continues to deform even though the load is dropping. At the same time, the
part of the structure away from the region of localized deform<ltion experiences unloading.
Thus, the oven"l behavior is inlluenced by the ratio of the lengths of structure undergoing
incre'lsing and decn:<lsing ddormations.

The elfect of the length of the shell on the c<llculated response of the present problem
will be examined through an eX<lmple involving an aluminum shell with D/t = 25.3. We
first consider the response for a c<lse with 2L/D = 25.6. In order to illustrate the effect of
localization on the behavior of the structure the local moment-curvature and moment­
ovalization responses c<llculated at s = 0 and s = L (identified as points I and II respectively)
arc compared in Fig. 19. The responses at the two points remain the same until the limit
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moment is reached. Beyond the limit moment, the deformation in the mid-span area of the
shell grows at a rate which is faster than that of the uniformly deforming shell. At the same
time, the end of the shell starts to unload as shown in the figure. The unloading quickly
becomes essentially elastic, indicated by the steep slope of the response at s = L in both
figures. The overall iH - <1>* and 6.D - <1>* responses of this shdl arc shown in Fig. 20. The
post-limit load moment is seen to drop at a much raster rate than the uniformly ovalized
shell.

Similar calculations were performed for two ndditional shells with lengths of
2LID = 19.2 and 12.8. The resuhs arc also included in Fig. 20. The moment-eurvature and
ovalization-curvature responses of the three shells me seen to be independent of the length
up to the limit moment. Beyond the limit moment the deformations of all three shells
localize as evidenced by the different ovalizntions recorded at the mid-spans and at the ends
of the shells. Figure 21 shows detailed plots of the ovalization along the length for the shells
with 2LID = 25.6 and 12.8 for various values of (1)* ~ <1>1.. The two sets of results shown
were selected to have approximately the same values of maximum ovalizations (i.e. they
correspond to different values of <1>*). The length of the shell experiencing localization, in
the deformation regime shown, is approximately nine diameters for both cases. In fact. the
overall geometries of the localized regions of the three shells are very similar indeed. We
thus conclude that the detailed deformation and the length of the localized region are
governed primarily by local equilibrium and not by the overalllcngth of the shell.
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However from Fig. 20a it can be scen that the overall post-limit load M -$. response
of the shell is significantly affectcd by the length of thc shell. As the length of the shell
increases thc moment drops at a much faster ratc with (1) •. This has a corresponding effect
on the deformation in thc localized region as shown in Fig. 20b. This difference can be
explained as follows. It has bcen shown that the length of the shell undergoing localization

x
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Fig. 21. Ovalization along length of shell at different values of$" ;.. $t. Comparison between shells
of length of 25.6 and 12.8 diameters.
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is approximately the same for the three cases. Thus, the length of shell which remains
uniform in the case with '2LiD = '25.6 is longer than that with '2LiD = 1'2.8. As the
moment drops the uniform section(s) undergoes unloading even though the net end rotation
increased. Thus. the increase of deformation in the localized region depends on the increase
in the end rotation and on the amount of rotation caused by the unloading of the uniform
section. For the longer shell. the second component is larger and, as a result. a smaller end
rotation is required to deform the localized section.

[n order to illustrate this point further. a series of additional shells with lengths of
'2Li D = 51. 10'2. '205 and 410 were analyzed in the following approximate fashion. The shell
with length of 25.6 diameters is clearly long enough for the response of its ends to be
assumed to be unaffected by the localized deformation which takes place at mid-span. Thus.
the response of the end of this shell was assumed to be also representative of the response
away from the localized region of longer shells. This simplification was used to calculate
the J/-<J>* response of the long shells given above. The results are shown in Fig. 22. As L
increases. the post-limit load response drops more precipitously. For very long shells, the
AI - (ll* response turns backwards. Clearly, in such cases, even under curvature control
conditions. the shell will fail catastrophically upon reaching the limit load by folding into
two sections.

(7) Behlll'ior (!/ shcll.v lI'ith intermediate Djt /'(I11I('s
[n the experimental part of this study it was shown that aluminum 6061-T6 shells with

2X < IJjt < 40 exhibited rather complex behavior which involved short wave ripples as well
as localized deformation which extended over a length of a few shell diameters. The ratio
of the characteristic lengths of the two events was approximately 20. Thus numerical
modelling of the problem became more cumbersome. The formulation presented in eqns
(I) (5) was used to approximately analyze a shell with half length of LjD = 9.6 and
nit == :'5.7. The shell was assumed to have an initial geometric imperfection as follows:

[ Ttl' ( S )2 Ttl' (.I.)2J
II' == - R _lI, cos ;'/J exp -If 5;./} +ii,ws I exp -{I j . (27)

For the case analyzed I = 3.2D was used. The shell was discretized through the following
series expansions for the displacements:

The curvature "(.I') was again represented through expressions (25) and (26). The following
number of terms were used in the series expansions above: N. = I. = J. = 6, T. = J. = 8
and 1\ = 5. Ninety integration points in SE [0, L) were used and distributed unevenly along
the length. The problem was again solved by prescribing the end rotation (ll*. The amplitudes
of the initial imperfections used were (I, = 0.5 x 10 ) and iii = 0.5 x 10 - 3. The nature of the
imperfections as well as the displacement functions adopted allow the growth, localization
and possibly the interaction of short wavelength ripples and long wavelength instabilities.
A set of results arc shown in Fig. 23. The results from the uniformly deformed shell are
included for comparison purposes. The presence of the small imperfections has relatively
little effect on the predicted response up to the first bifurcation point (indicated by "r"). In
the neighborhood of the bifurcation point the amplitude of the short wavelength ripples
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start to grow. The bias provided in the imperfection is amplified and the growth of the
ripples localizes. This is demonstrated in Fig. 24 in which the ovalization along the shell
length is plotted for various values of end rotation $ •. A moment maximum develops and
the shell response starts to decay precipitously. Prior to the limit moment a second local­
ization phenomenon which involves a few diameters of the shell on either side of the
rippled section is seen to occur in Fig. 24. This is similar in nature to what was observed
experimentally in Fig. 17'. As in the case of the thinner shells analyzed earlier a second
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bifurcation point was identified in the largest of the short wavelength ripples soon after the
limit moment as shown in Fig. 23. This is again similar qualitatively at least to the
experimental results. The limit load predicted is seen to occur at a much smaller curvature
than that predicted for the uniformly ovalized shell. Quite clearly the rotation <I>t cor­
responding to this limit load should be considered as the maximum allowable value for
such shells.

The results presented indicate thal short wave ripples arc again the triggering mech­
anism for the sequence of events that follow their onset.
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Th~ m~tric and curvature tensors of a circular cylindrical shell of radius R with an initial geometric imper­
fection given by Ii"' = Ii"·(.~. 0) are as follows:

(AI)

(A2)


